Schubert Varieties and Distances between Subspaces of Different Dimensions

نویسندگان

  • Ke Ye
  • Lek-Heng Lim
چکیده

We resolve a basic problem on subspace distances that often arises in applications: How can the usual Grassmann distance between equidimensional subspaces be extended to subspaces of different dimensions? We show that a natural solution is given by the distance of a point to a Schubert variety within the Grassmannian. This distance reduces to the Grassmann distance when the subspaces are equidimensional and does not depend on any embedding into a larger ambient space. Furthermore, it has a concrete expression involving principal angles and is efficiently computable in numerically stable ways. Our results are largely independent of the Grassmann distance—if desired, it may be substituted by any other common distances between subspaces. Our approach depends on a concrete algebraic geometric view of the Grassmannian that parallels the differential geometric perspective that is well established in applied and computational mathematics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pieri-type Formulas for Maximal Isotropic Grassmannians via Triple Intersections

We give an elementary proof of the Pieri-type formula in the cohomology of a Grassmannian of maximal isotropic subspaces of an odd orthogonal or symplectic vector space. This proof proceeds by explicitly computing a triple intersection of Schubert varieties. The decisive step is an exact description of the intersection of two Schubert varieties, from which the multiplicities (which are powers o...

متن کامل

Gröbner geometry of Schubert polynomials

Schubert polynomials, which a priori represent cohomology classes of Schubert varieties in the flag manifold, also represent torus-equivariant cohomology classes of certain determinantal loci in the vector space of n×n complex matrices. Our central result is that the minors defining these “matrix Schubert varieties” are Gröbner bases for any antidiagonal term order. The Schubert polynomials are...

متن کامل

Fe b 20 02 Gröbner geometry of Schubert polynomials

Schubert polynomials, which a priori represent cohomology classes of Schubert varieties in the flag manifold, also represent torus-equivariant cohomology classes of certain determinantal loci in the vector space of n×n complex matrices. Our central result is that the minors defining these “matrix Schubert varieties” are Gröbner bases for any antidiagonal term order. The Schubert polynomials are...

متن کامل

Four Entries for Kluwer Encyclopaedia of Mathematics

The Schubert Calculus is a formal calculus of symbols representing geometric conditions used to solve problems in enumerative geometry. This originated in work of Chasles [9] on conics and was systematized and used to great effect by Schubert in his treatise “Kalkül der abzählenden Geometrie” [33]. The justification of Schubert’s enumerative calculus and the verification of the numbers he obtai...

متن کامل

Multiplicities of Points on Schubert Varieties in Grassmannians

An important invariant of a singular point on an algebraic variety X is its multiplicity : the normalized leading coefficient of the Hilbert polynomial of the local ring. The main result of the present note is an explicit determinantal formula for the multiplicities of points on Schubert varieties in Grassmannians. This is a simplification of a formula obtained in [5]. More recently, the recurr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Matrix Analysis Applications

دوره 37  شماره 

صفحات  -

تاریخ انتشار 2016